Asymptotic Normality of Graph Statistics

نویسنده

  • Krzysztof NOWICKI
چکیده

Various types of graph statistics for Bernoulli graphs are represented as numerators of incomplete U-statistics. Asymptotic normality of these statistics is proved for Bernoulli graphs in which the edge probability is constant. In addition it is shown that subgraph counts asymptotically are linear functions of the number of edges in the graph. AMS Subject Classification: Primary 05C99; Secondary 62699, 92A20

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Asymptotic Results of Kernel Density Estimator in Length-Biased Sampling

In this paper, we prove the strong uniform consistency and asymptotic normality of the kernel density estimator proposed by Jones [12] for length-biased data.The approach is based on the invariance principle for the empirical processes proved by Horváth [10]. All simulations are drawn for different cases to demonstrate both, consistency and asymptotic normality and the method is illustrated by ...

متن کامل

Asymptotic Normality of Some Graph-Related Statistics

Petrovskaya and Leontovich (1982) proved a central limit theorem for sums of dependent random variables indexed by a graph. We apply this theorem to obtain asymptotic normality for the number of local maxima of a random function on certain graphs and for the number of edges having the same color at both endpoints in randomly colored graphs. We briefly motivate these problems, and conclude with ...

متن کامل

Asymptotic Normality of Statistics on Permutation Tableaux

Abstract. In this paper we use a probabilistic approach to derive the expressions for the characteristic functions of basic statistics defined on permutation tableaux. Since our expressions are exact, we can identify the distributions of basic statistics (like the number of unrestricted rows, the number of rows, and the number of 1s in the first row) exactly. In all three cases the distribution...

متن کامل

The eccentric connectivity index of bucket recursive trees

If $G$ is a connected graph with vertex set $V$, then the eccentric connectivity index of $G$, $xi^c(G)$, is defined as $sum_{vin V(G)}deg(v)ecc(v)$ where $deg(v)$ is the degree of a vertex $v$ and $ecc(v)$ is its eccentricity. In this paper we show some convergence in probability and an asymptotic normality based on this index in random bucket recursive trees.

متن کامل

Asymptotic Behaviors of Nearest Neighbor Kernel Density Estimator in Left-truncated Data

Kernel density estimators are the basic tools for density estimation in non-parametric statistics.  The k-nearest neighbor kernel estimators represent a special form of kernel density estimators, in  which  the  bandwidth  is varied depending on the location of the sample points. In this paper‎, we  initially introduce the k-nearest neighbor kernel density estimator in the random left-truncatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001